Abstract

As a part of NASA’s NextGen research effort, the focus area of Airspace Super-Density Operations (ASDO) performs research pertaining to highly efficient operations at the busiest airports and terminal airspaces. It is expected that multiple ASDO concepts will be interacting with one another in a complex stochastic manner. This research effort developed a high-fidelity queuing model of the terminal area suitable for the design and analysis of NextGen ASDO concepts, as well as to perform time-varying stochastic analysis of terminal area operations with regards to schedule and wind uncertainties. A unique aspect of the current approach is the discretization of terminal airspace routes into 3-nmi servers for enforcing separation requirements. The current research effort developed high-fidelity queuing models of the San Francisco International Airport (SFO) terminal airspace, based on published airspace geometry. A discrete-event simulation framework was developed to simulate the temporal evolution of flights in the terminal area. The queuing simulation framework was used in different case studies involving various phenomena in the terminal area such as compression, conflict and delay analysis, runway reconfiguration and variable inter-aircraft separation. In addition to being a useful analysis tool, the proposed simulation framework shows potential as a real time stochastic decision support tool due to its low computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call