Abstract

We consider a queueing system with a single server having a mixture of a semi-Markov process (SMP) and a Poisson process as the arrival process, where each SMP arrival contains a batch of customers. The service times are exponentially distributed. We derive the distributions of the queue length of both SMP and Poisson customers when the sojourn time distributions of the SMP have rational Laplace–Stieltjes transforms. We prove that the number of unknown constants contained in the generating function for the queue length distribution equals the number of zeros of the denominator of this generating function in the case where the sojourn times of the SMP follow exponential distributions. The linear independence of the equations generated by those zeros is discussed for the same case with additional assumption. The necessary and sufficient condition for the stability of the system is also analyzed. The distributions of the waiting times of both SMP and Poisson customers are derived. The results are applied to the case in which the SMP arrivals correspond to the exact sequence of Motion Picture Experts Group (MPEG) frames. Poisson arrivals are regarded as interfering traffic. In the numerical examples, the mean and variance of the waiting time of the ATM cells generated from the MPEG frames of real video data are evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.