Abstract

Electronic medical records (EMRs) are being increasingly used worldwide to facilitate improved healthcare services [2,3]. They describe the clinical decision process relating to a patient, detailing the observed symptoms, the conducted diagnostic tests, the identified diagnoses and the prescribed treatments. However, medical records search is challenging, due to the implicit knowledge inherent within the medical records - such knowledge may be known by medical practitioners, but hidden to an information retrieval (IR) system [3]. For instance, the mention of a treatment such as a drug may indicate to a practitioner that a particular diagnosis has been made even if this was not explicitly mentioned in the patient's EMRs. Moreover, the fact that a symptom has not been observed by a clinician may rule out some specific diagnoses. Our work focuses on searching EMRs to identify patients with medical histories relevant to the medical condition(s) stated in a query. The resulting system can be beneficial to healthcare providers, administrators, and researchers who may wish to analyse the effectiveness of a particular medical procedure to combat a specific disease [2,4]. During retrieval, a healthcare provider may indicate a number of inclusion criteria to describe the type of patients of interest. For example, the used criteria may include personal profiles (e.g. age and gender) or some specific medical symptoms and tests, allowing to identify patients that have EMRs matching the criteria. To attain effective retrieval performance, we hypothesise that, in such a medical IR system, both the information needs and patients should be modelled based on how the medical process is developed. Specifically, our thesis states that since the medical decision process typically encompasses four aspects (symptom, diagnostic test, diagnosis, and treatment), a medical search system should take into account these aspects and apply inferences to recover possible implicit knowledge. We postulate that considering these aspects and their derived implicit knowledge at different levels of the retrieval process (namely, sentence, record, and inter-record level) enhances the retrieval performance. Indeed, we propose to build a query and patient understanding framework that can gain insights from EMRs and queries, by modelling and reasoning during retrieval in terms of the four aforementioned aspects (symptom, diagnostic test, diagnosis, and treatment) at three different levels of the retrieval process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.