Abstract

The rapid development of wearable electronics requires a revolution of power accessories regarding flexibility and energy density. The Li-CO2 battery was recently proposed as a novel and promising candidate for next-generation energy-storage systems. However, the current Li-CO2 batteries usually suffer from the difficulties of poor stability, low energy efficiency, and leakage of liquid electrolyte, and few flexible Li-CO2 batteries for wearable electronics have been reported so far. Herein, a quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency, by employing ultrafine Mo2 C nanoparticles anchored on a carbon nanotube (CNT) cloth freestanding hybrid film as the cathode, is demonstrated. Due to the synergistic effects of the CNT substrate and Mo2 C catalyst, it achieves a low charge potential below 3.4 V, a high energy efficiency of ≈80%, and can be reversibly discharged and charged for 40 cycles. Experimental results and theoretical simulation show that the intermediate discharge product Li2 C2 O4 stabilized by Mo2 C via coordinative electrons transfer should be responsible for the reduction of overpotential. The as-fabricated quasi-solid-state flexible fiber-shaped Li-CO2 battery can also keep working normally even under various deformation conditions, giving it great potential of becoming an advanced energy accessory for wearable electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call