Abstract
The quasi-Greens function method (QGFM) is applied to solve the bending problem of simply supported polygonal shallow spherical shells on Pasternak foundation. A quasi-Greens function is established by using the fundamental solution and the boundary equation of the problem. And the function satisfies the homogeneous boundary condition of the problem. Then the differential equation of the problem is reduced to two simultaneous Fredholm integral equations of the second kind by the Greens formula. The singularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The comparison with the ANSYS finite element solution shows a good agreement, and it demonstrates the feasibility and efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.