Abstract
The Bayesian analysis of outliers using a non-informative prior for the parameters is non-trivial because models with different numbers of outliers have different dimensions. A quasi-Bayesian approach based on the Akaike's predictive likelihood is proposed for the analysis of regression outliers. It overcomes the dimensionality problem in Bayesian outlier analysis in which the likelihood of the outlier model is compensated by a correction factor adjusted for the number of outliers. The stack loss data set is analysed with satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.