Abstract

The Matalon-Packter (MP) empirical law of periodically precipitating (Liesegang phenomenon) systems under non-equilibrium conditions describes the dependence of the periodicity (spacing coefficient) on the initial concentration of the outer electrolyte. We aim to present the MP law in a more generalized form using a realistic approach wherein mass transfer in the gel column plays a role instead of the initial concentrations. This work is an attempt to make such progress. The Liesegang bands of Fe(OH)2 were studied by varying the reservoir concentrations (c) and volumes (V) of the outer electrolyte (NH4OH). The spacing coefficient was found to be a function of the volume and concentration of the outer electrolyte. It was observed that the amount of chemical substance (cV) and the average molar diffusion flux (Fdiff) of the ions of the outer electrolyte could be a unifying quantity for expressing the MP law instead of the initial electrolyte concentration. We demonstrated that a single model is possible for a system, irrespective of the V value. Three different volumes were employed, and the calculations were performed under small, intermediate, and larger reservoir volume regimes. Interestingly, a single model was observed for the diffusion coefficients for all of the Fdiff values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call