Abstract
A novel and efficient quasi-Monte Carlo method for computing the area of a point-sampled surface with associated surface normal for each point is presented. Our method operates directly on the point cloud without any surface reconstruction procedure. Using the Cauchy–Crofton formula, the area of the point-sampled surface is calculated by counting the number of intersection points between the point cloud and a set of uniformly distributed lines generated with low-discrepancy sequences. Based on a clustering technique, we also propose an effective algorithm for computing the intersection points of a line with the point-sampled surface. By testing on a number of point-based models, experiments suggest that our method is more robust and more efficient than those conventional approaches based on surface reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.