Abstract

SummaryIn this paper, a novel characteristic–based penalty (CBP) scheme for the finite‐element method (FEM) is proposed to solve 2‐dimensional incompressible laminar flow. This new CBP scheme employs the characteristic‐Galerkin method to stabilize the convective oscillation. To mitigate the incompressible constraint, the selective reduced integration (SRI) and the recently proposed selective node–based smoothed FEM (SNS‐FEM) are used for the 4‐node quadrilateral element (CBP‐Q4SRI) and the 3‐node triangular element (CBP‐T3SNS), respectively. Meanwhile, the reduced integration (RI) for Q4 element (CBP‐Q4RI) and NS‐FEM for T3 element (CBP‐T3NS) with CBP scheme are also investigated. The quasi‐implicit CBP scheme is applied to allow a large time step for sufficient large penalty parameters. Due to the absences of pressure degree of freedoms, the quasi‐implicit CBP‐FEM has higher efficiency than quasi‐implicit CBS‐FEM. In this paper, the CBP‐Q4SRI has been verified and validated with high accuracy, stability, and fast convergence. Unexpectedly, CBP‐Q4RI is of no instability, high accuracy, and even slightly faster convergence than CBP‐Q4SRI. For unstructured T3 elements, CBP‐T3SNS also shows high accuracy and good convergence but with pressure oscillation using a large penalty parameter; CBP‐T3NS produces oscillated wrong velocity and pressure results. In addition, the applicable ranges of penalty parameter for different proposed methods have been investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call