Abstract
A new approach is presented for synthesizing modulated metasurface (MTS) antennas (MoMetAs) with arbitrary radiation patterns, assumed to be given in amplitude, phase, and polarization. The MTS is defined on a circular domain and is represented as a continuous sheet transition impedance boundary condition (IBC) on the top of a grounded substrate. The proposed method relies on an entire-domain discretization of the electric field integral equation (EFIE). Via the dyadic Green’s function of the grounded substrate, the desired radiation pattern is translated into the visible part of the surface current spectrum, decomposed into entire-domain and orthogonal basis functions, while the invisible part of the spectrum stems from the solution of the unmodulated sheet problem. The EFIE is then inverted to obtain the sheet impedance, which is constrained to be anti-Hermitian, as required for implementation with lossless patches. The efficiency of the method relies on the precomputation of the reaction integrals between three functions: basis functions for currents and impedances and testing functions for fields. The formulation is presented first for the scalar (isotropic) MTS case and then generalized to the tensorial (anisotropic) MTSs. Several radiation patterns are presented and designed successfully. A full-wave method-of-moment code is used to validate the designed MTSs IBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.