Abstract

Metasurfaces are a class of two-dimensional artificial resonators, creating new opportunities for strong light-matter interactions. One type of nonradiative optical metasurface that enables substantial light concentration is based on quasi-Bound States in the Continuum (quasi-BIC). Here we report the design and fabrication of a quasi-BIC dielectric metasurface that serves as an optical frequency antenna for photocatalysis. By depositing Ni nanoparticle reactors onto the metasurface, we create an antenna-reactor photocatalyst, where the virtually lossless metasurface funnels light to drive a chemical reaction. This quasi-BIC-Ni antenna-reactor drives H2 dissociation under resonant illumination, showing strong polarization, wavelength, and optical power dependencies. Both E-field-induced electronic and photothermal heating effects drive the reaction, supported by load-dependent reactivity studies and our theoretical model. This study unlocks new opportunities for photocatalysis that employ dielectric metasurfaces for light harvesting in an antenna-reactor format.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.