Abstract

A quartz crystal microbalance (QCM) has been employed to monitor the removal of two model solid organic soils, dotriacontane and tripalmitin, from the hard surface of the QCM crystal in aqueous surfactant solutions of octa-ethyleneglycol mono n-dodecyl ether (C 12E 8). We have investigated the effect of varying the thickness of the soil coating on soil removal and the effect of soaking the soil in high-purity water for an extended period of time before adding surfactant. The QCM results support the view that net soil removal is preceded by a stage of water and surfactant penetration into the soil. The rate of penetration and rate of removal depends on the soil type. Water and surfactant take longer to penetrate dotriacontane compared to tripalmitin coatings. The removal process also occurs over a longer period of time in the case of dotriacontane coatings. The percentage of material removed is less for dotriacontane, compared to tripalmitin coatings. The initial coating thickness on the hard surface does not appear to govern the final percentage of soil removed, at least in the thickness range accessible to the QCM (approximately ≤800 nm). Immersing the soil coated surfaces in water for a relatively long time, hastens the onset of the removal stage after surfactant is added but does not significantly influence the rate and extent of removal from the hard surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call