Abstract

Quantum fields are well known to violate the weak energy condition of general relativity: the renormalised energy density at any given point is unbounded from below as a function of the quantum state. By contrast, for the scalar and electromagnetic fields it has been shown that weighted averages of the energy density along timelike curves satisfy `quantum weak energy inequalities' (QWEIs) which constitute lower bounds on these quantities. Previously, Dirac QWEIs have been obtained only for massless fields in two-dimensional spacetimes. In this paper we establish QWEIs for the Dirac and Majorana fields of mass $m\ge 0$ on general four-dimensional globally hyperbolic spacetimes, averaging along arbitrary smooth timelike curves with respect to any of a large class of smooth compactly supported positive weights. Our proof makes essential use of the microlocal characterisation of the class of Hadamard states, for which the energy density may be defined by point-splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.