Abstract

A unit evolution step of discrete-time quantum walks (QWs) is determined by both a coin-flip operator and a position-shift operator. The behavior of quantum walkers after many steps delicately depends on the coin-flip operator and an initial condition of the walk. To get the behavior, a lot of long-time limit distributions for the QWs starting with a localized initial state have been derived. In this paper, we compute limit distributions of a 2-state QW with a delocalized initial state, not a localized initial state, and discuss how the walker depends on the coin-flip operator. The initial state induced from the Fourier series expansion, which is called the (α, β) delocalized initial state in this paper, provides different limit density functions from the ones of the quantum walk with a localized initial state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call