Abstract

In this paper, Wielandt's inequality for classical channels is extended to quantum channels. That is, an upper bound to the number of times a channel must be applied, so that it maps any density operator to one with full rank, is found. Using this bound, dichotomy theorems for the zero-error capacity of quantum channels and for the Matrix Product State (MPS) dimension of ground states of frustration-free Hamiltonians are derived. The obtained inequalities also imply new bounds on the required interaction-range of Hamiltonians with unique MPS ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.