Abstract

We study an Ising chain undergoing a quantum phase transition in a quantum magnetic field. Such a field can be emulated by coupling the chain to a central spin initially in a superposition state. We show that – by adiabatically driving such a system – one can prepare a quantum superposition of any two ground states of the Ising chain. In particular, one can end up with the Ising chain in a superposition of ferromagnetic and paramagnetic phases – a scenario with no analogue in prior studies of quantum phase transitions. Remarkably, the resulting magnetization of the chain encodes the position of the critical point and universal critical exponents, as well as the ground state fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.