Abstract
Theory predicts that the membrane potential will polarize membrane molecules and cause them to vibrate coherently at a frequency of approximately 10(11) HZ. If the supply of metabolic energy exceeds a minimum value, membrane phonons may condense their momentum into a single "giant" vibrational mode. At 10(11) HZ ionic screening is small up to distances of approximately a micrometre, so forces of a range several orders of magnitude longer than chemical forces can arise. These forces may be attractive or repulsive depending on frequency. They should occur in every metabolically active membrane and may control macromolecular transport and enzyme-substrate interactions. We find that normal human erythrocytes in plasma form rouleaux faster than Brownian motion predicts. When cells are fixed in glutaraldehyde or are metabolically depleted, or if the membrane potential is brought to zero, the rate of aggregation agrees with Brownian theory. When the metabolically depleted cells are revived or if the membrane potential is restored, then the interaction returns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.