Abstract

The k-nearest neighbors (k-NN) is a basic machine learning (ML) algorithm, and several quantum versions of it, employing different distance metrics, have been presented in the last few years. Although the Euclidean distance is one of the most widely used distance metrics in ML, it has not received much consideration in the development of these quantum variants. In this article, a novel quantum k-NN algorithm based on the Euclidean distance is introduced. Specifically, the algorithm is characterized by a quantum encoding requiring a low number of qubits and a simple quantum circuit not involving oracles, aspects that favor its realization. In addition to the mathematical formulation and some complexity observations, a detailed empirical evaluation with simulations is presented. In particular, the results have shown the correctness of the formulation, a drop in the performance of the algorithm when the number of measurements is limited, the competitiveness with respect to some classical baseline methods in the ideal case, and the possibility of improving the performance by increasing the number of measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.