Abstract
We develop a novel method for measuring the similarity between complete weighted graphs, which are probed by means of the discrete-time quantum walks. Directly probing complete graphs using discrete-time quantum walks is intractable due to the cost of simulating the quantum walk. We overcome this problem by extracting a commute time minimum spanning tree from the complete weighted graph. The spanning tree is probed by a discrete-time quantum walk which is initialized using a weighted version of the Perron-Frobenius operator. This naturally encapsulates the edge weight information for the spanning tree extracted from the original graph. For each pair of complete weighted graphs to be compared, we simulate a discrete-time quantum walk on each of the corresponding commute time minimum spanning trees and, then, compute the associated density matrices for the quantum walks. The probability of the walk visiting each edge of the spanning tree is given by the diagonal elements of the density matrices. The similarity between each pair of graphs is then computed using either: 1) the inner product or 2) the negative exponential of the Jensen-Shannon divergence between the probability distributions. We show that in both cases the resulting similarity measure is positive definite and, therefore, corresponds to a kernel on the graphs. We perform a series of experiments on publicly available graph datasets from a variety of different domains, together with time-varying financial networks extracted from data for the New York Stock Exchange. Our experiments demonstrate the effectiveness of the proposed similarity measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.