Abstract

Gravitational search algorithm (GSA) is a swarm intelligence optimization algorithm that shares many similarities with evolutionary computation techniques. However, the GSA is driven by the simulation of a collection of masses which interact with each other based on the Newtonian gravity and laws of motion. Inspired by the classical GSA and quantum mechanics theories, this work presents a novel GSA using quantum mechanics theories to generate a quantum-inspired gravitational search algorithm (QIGSA). The application of quantum mechanics theories in the proposed QIGSA provides a powerful strategy to diversify the algorithm’s population and improve its performance in preventing premature convergence to local optima. The simulation results and comparison with nine state-of-the-art algorithms confirm the effectiveness of the QIGSA in solving various benchmark optimization functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.