Abstract

Botulinum neurotoxins (BoNTs) are potent toxins produced by Clostridium bacteria that are responsible for the illness botulism and are listed as bioterrorism agents. BoNT serotype E (BoNT/E) is one of four BoNT serotypes that cause human botulism and is the second most frequent cause of foodborne botulism. Rapid detection and discrimination of BoNT serotypes implicated in human disease are critical for ensuring timely treatment of patients and identifying sources of toxins, but there have been few reported detection methods for BoNT/E and even fewer methods usable for BoNT serotyping. We report a nanobiosensor based on Förster resonance energy transfer (FRET) between semiconductor nanocrystals (quantum dots, QDs) and dark quencher-labeled peptide probes to detect biologically active BoNT/E in aqueous media. The peptide probes contain a specific cleavage site for active BoNT/E. QD photoluminescence, which changes intensity due to FRET when the peptide probe is cleaved, was used to indicate toxin presence and quantity. The detection of a BoNT/E light chain (LcE) and holotoxin was observed within 3 h. The limits of detection were 0.02 and 2 ng/mL for LcE and holotoxin, respectively. The nanobiosensor shows good specificity toward the target in tests with nontarget BoNT serotypes. The high sensitivity, simple operation, short detection time, and ability to be used in parallel with probes developed for other BoNT serotypes indicate that the nanobiosensor will be useful for rapid BoNT/E detection and serotype discrimination in food analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.