Abstract
Interacting fourth order quantum mechanics is in the Ostrogradski formalism afflicted by an instability involving the decay of the vacuum. When treating such systems as 1 + 0 -dimensional Euclidean field theories in the transfer operator formalism the ‘instability problem’ and the ‘unitarity problem’ are distinct and decoupled. The instability problem is shown to be absent: a stable ground state always exists and is typically normalizable and strictly positive. The generator H of the transfer operator replaces the Ostrogradski Hamiltonian and is non-Hermitian but selfadjoint with respect to a Krein structure, which also ensures consistency with the Lagrangian functional integral. The case of a scalar quartic derivative interaction is treated in detail. Variational perturbation theory, a strong coupling expansion, and direct diagonalization of matrix truncations are used to compute the spectrum of H in this case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.