Abstract

In this paper, a quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections is proposed. Firstly, in order to enhance the complexity of trajectory, three impulse signals values are injected into coupled hyper-chaotic Lorenz system during iterations. Then, six sequences generated from this system are used to encrypt red, green and blue components of the quantum color original image by XOR operations and right cyclic shift operations. Six initial values and three impulse signals values are used as keys, which could reduce the burden of keys transmission and make the cryptosystem own a key space large enough to resist exhaustive attack, even the attack from a quantum computer. Numerical simulations demonstrate that the proposed encryption scheme has a good feasibility and effectiveness for protecting quantum color images and is more secure in comparison with other encryption algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.