Abstract

We are investigating the molecular dynamics of the butatriene cation after excitation from the ground state (X(2)B(2g)) to the first excited electronic state (A(2)B(2u)) by using the time-dependent discrete variable representation (TDDVR) method. The investigation is being carried out with a realistic 18-mode model Hamiltonian consisting of all the vibrational degrees of freedom of the butatriene molecule. First, we perform the simulation on a basic five mode model, and then by including additional thirteen modes as bath on the basic model. This sequential inclusion of bath modes demonstrates the effect of so called weak modes on the subsystem, where the calculations of energy and population transfer from the basic model to the bath quantify the same effect. The spectral profile obtained by using the TDDVR approach shows reasonably good agreement with the results calculated by the quantum mechanical approach/experimental measurement. It appears that the TDDVR approach for those large systems where quantum mechanical description is needed in a restricted region, is a good compromise between accuracy and speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.