Abstract

In the vibrational strong coupling (VSC) regime, molecular vibrations and resonant low-frequency cavity modes form light-matter hybrid states, vibrational polaritons, with characteristic infrared (IR) spectroscopic signatures. Here, we introduce a molecular quantum chemistry-based computational scheme for linear IR spectra of vibrational polaritons in polyatomic molecules, which perturbatively accounts for nonresonant electron-photon interactions under VSC. Specifically, we formulate a cavity Born-Oppenheimer perturbation theory (CBO-PT) linear response approach, which provides an approximate but systematic description of such electron-photon correlation effects in VSC scenarios while relying on molecular ab initio quantum chemistry methods. We identify relevant electron-photon correlation effects at the second order of CBO-PT, which manifest as static polarizability-dependent Hessian corrections and an emerging polarizability-dependent cavity intensity component providing access to transmission spectra commonly measured in vibro-polaritonic chemistry. Illustratively, we address electron-photon correlation effects perturbatively in IR spectra of CO2 and Fe(CO)5 vibro-polaritonic models in sound agreement with nonperturbative CBO linear response theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call