Abstract

In the present study, ab initio methods have been used to study the OH hydrogen-abstraction reaction from two substituted aldehydes: FCHO and ClCHO. A complex mechanism in which the overall rate depends on the rates of two competitive reactions, a reversible step where a reactant (or prereactive) complex is formed, followed by the irreversible hydrogen abstraction to form the products, is corroborated. This mechanism was previously shown to describe accurately the kinetics of the OH hydrogen-abstraction reaction from formaldehyde and acetaldehyde. Classical transition state theory (TST) rate constants calculated with tunneling corrections, assuming an unsymmetrical Eckart barrier, agree very well with experimental upper bound values. Activation energy barriers and enthalpies of reaction have been estimated through CCSD(T) single point calculations using MP2 geometries and frequencies and the 6-311++G(d,p) basis set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.