Abstract

Quantum Gases At low temperatures, two-dimensional (2D) systems with contact interactions are expected to exhibit quantum anomalies—a breakdown of scaling laws that characterize such systems in the classical regime. Signatures of these anomalies have been observed in the real-space properties of 2D Fermi gases, but the effect is much less pronounced than expected on theoretical grounds. Murthy et al. studied the momentum-space profiles of 2D superfluids of fermionic atoms. They initially perturbed the gas and then monitored the momentum distribution of its atoms. In the regime of strong interactions between the atoms, the momentum profiles deviated markedly from the classical scaling. Science , this issue p. [268][1] [1]: /lookup/doi/10.1126/science.aau4402

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.