Abstract

This work presents a novel Evolutionary Quantum Neural Network (EQNN) based workload prediction model for Cloud datacenter. It exploits the computational efficiency of quantum computing by encoding workload information into qubits and propagating this information through the network to estimate the workload or resource demands with enhanced accuracy proactively. The rotation and reverse rotation effects of the Controlled-NOT (C-NOT) gate serve activation function at the hidden and output layers to adjust the qubit weights. In addition, a Self Balanced Adaptive Differential Evolution (SB-ADE) algorithm is developed to optimize qubit network weights. The accuracy of the EQNN prediction model is extensively evaluated and compared with seven state-of-the-art methods using eight real world benchmark datasets of three different categories. Experimental results reveal that the use of the quantum approach to evolutionary neural network substantially improves the prediction accuracy up to 91.6% over the existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call