Abstract

Artificial neural networks, usually just called neural networks, computing systems indefinitely inspired by the biological neural networks and they are extensive in both research as well as industry. It is critical to design quantum Neural Networks for complete quantum learning tasks. In this project, we suggest a computational neural network model based on principles of quantum mechanics which form a quantum feed-forward neural network proficient in universal quantum computation. This structure takes input from one layer of qubits and drives that input onto another layer of qubits. This layer of qubits evaluates this information and drives on the output to the next layer. Eventually, the path leads to the final layer of qubits. The layers do not have to be of the same breadth, meaning they need not have the same number of qubits as the layer before and/or after it. This assembly is trained on which path to take identical to classical ANN. The intended project can be compiled by the subsequent points provided here: 1. The expert training of the quantum neural network utilizing the fidelity as a cost function, providing both conventional and efficient quantum implementations. 2. Use of methods that enable quick optimization with reduced memory requirements. 3. Benchmarking our proposal for the quantum task of learning an unknown unitary and find extraordinary generality and a remarkable sturdiness to noisy training data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.