Abstract

In quantum mechanics certain operator-valued measures are introduced, called instruments, which are an analogue of the probability measures of classical probability theory. As in the classical case, it is interesting to study convolution semigroups of instruments on groups and the associated semigroups of probability operators. In this paper the case is considered of a finite-dimensional Hilbert space (n-level quantum system) and of instruments defined on a finite-dimensional Lie group. Then, the generator of a continuous semigroup of (quantum) probability operators is characterized. In this way a quantum analogue of Hunt's representation theorem for the generator of convolution semigroups on Lie groups is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.