Abstract

Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.