Abstract

A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

Highlights

  • Quantitative structure–property relationships (QSPR) remain the focus of many studies aimed at the modeling and prediction of physicochemical and biological properties of molecules

  • On the basis of the polarizability effect index (PEI) previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols

  • Multiple linear regression analysis using the novel MPEI, OEI and SX1CH indices is performed for the development of the final quantitative structure–property relationship (QSPR) model

Read more

Summary

Introduction

Quantitative structure–property relationships (QSPR) remain the focus of many studies aimed at the modeling and prediction of physicochemical and biological properties of molecules. A powerful tool to help in this task is chemometrics, which uses statistical and mathematical methods to extract maximum information from a data set. QSPR uses chemometric methods to describe how a given physicochemical property varies as a function of molecular descriptors describing the chemical structure of the molecule. It is possible to replace costly biological tests or experiments of a given physicochemical property (especially when involving hazardous and toxically risky materials or unstable compounds) with calculated descriptors, which can in turn be used to predict the responses of interest for new compounds. Chemometrics has provided new insight into the philosophy and theory behind QSPR modeling [1,2].

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call