Abstract
Four nanostructured active semiconducting materials currently used in electronic inks have been structurally characterised using a combination of small angle scattering techniques and scanning electron microscopy. The percolation theory and scaling laws have been used to obtain quantitative correlations of the network topologies and the local micro-structures with the electronic and electrical properties of the printed, electronic devices.The small angle light scattering has been used to expand the lower q-range of the Ultra Small Angle x-ray Scattering curves of the 2503 metallurgical grade silicon (mSi), silicon dioxide (SiO2), aluminium dioxide (Al2O3) and titanium dioxide (TiO2) materials by close to an order of magnitude, thereby providing valuable clustering properties for each material. Each scattering curve presented a series of multiple structural levels, which are then quantified using the Unified power-law approach to provide valuable clustering characteristics such as the degree of aggregation, polydispersity and geometry standard deviation. Subsequently, a fully screen-printed field effect transistor that uses mSi as the active material is demonstrated. The transistor had an ON/OFF current-ratio of 104; an electron mobility of 0.7 cm2/V s; a leakage current in the order of 5 × 10−9 A, and no current saturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.