Abstract

Exposure to environmental contaminants can lead to adverse outcomes in both human and nonhuman receptors. The Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP) frameworks can mechanistically inform cumulative risk assessment for human health and ecological end points by linking together environmental transport and transformation, external exposure, toxicokinetics, and toxicodynamics. This work presents a case study of a hypothetical contaminated site to demonstrate a quantitative approach for implementing the AEP framework and linking this framework to AOPs. We construct an AEP transport and transformation model and then quantify external exposure pathways for humans, fishes, and small herbivorous mammals at the hypothetical site. A Monte Carlo approach was used to address parameter variability. Source apportionment was quantified for each species, and published pharmacokinetic models were used to estimate internal target site exposure from external exposures. Published dose-response data for a multispecies AOP network were used to interpret AEP results in the context of species-specific effects. This work demonstrates (1) the construction, analysis, and application of a quantitative AEP model, (2) the utility of AEPs for organizing mechanistic exposure data and highlighting data gaps, and (3) the advantages provided by a source-to-outcome construct for leveraging exposure data and to aid transparency regarding assumptions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call