Abstract

This paper presents a new quantitative sensitivity analysis of cutting performances in orthogonal machining with restricted contact and flat-faced tools, based on a recently developed slip-line model. Cutting performances are comprehensively measured by five machining parameters, i.e., the cutting forces, the chip back-flow angle, the chip up-curl radius, the chip thickness, and the tool-chip contact length. It is demonstrated that the percentage of contribution of tool-chip friction to the variation of cutting performances depends on different types of machining operations. No general conclusion about the effect of tool-chip friction should be made before specifying a particular type of machining operation and cutting conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call