Abstract

Alzheimer's disease (AD) is characterized by amyloid plaques and neurofibrillary tangles accompanied by progressive neurite loss. Mitochondria play pivotal roles in AD development. PRDX3 is a mitochondrial peroxide reductase critical for H2O2 scavenging and signal transduction. In this study, we found that PRDX3 knockdown (KD) in the N2a-APPswe cell line promoted retinoic acid (RA)-induced neurite outgrowth but did not reduce the viability of cells damaged by tert-butyl hydroperoxide (TBHP). We found that knocking down PRDX3 expression induced dysregulation of more than one hundred proteins, as determined by tandem mass tag (TMT)-labeled proteomics. A Gene Ontology (GO) analysis revealed that the dysregulated proteins were enriched in protein localization to the plasma membrane, the lipid catabolic process, and intermediate filament cytoskeleton organization. A STRING analysis showed close protein–protein interactions among dysregulated proteins. The expression of Annexin A1 (ANXA1), serine (Ser)-/threonine (Thr)-protein phosphatase 2A catalytic subunit alpha isoform (PP2A) and glutathione S-transferase Mu 2 (GSTM2) was significantly upregulated in PRDX3-KD N2a-APPswe cell lines, as verified by western blotting. Our study revealed, for the first time, that PRDX3 may play important roles in neurite outgrowth and AD development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call