Abstract

The combination of Transcranial Magnetic Stimulation (TMS) with Electroencephalography (EEG) exposes the brain’s global response to localized and abrupt stimulations. However, large electric artifacts are induced in the EEG by the TMS, obscuring crucial stages of the brain’s response. Artifact removal is commonly performed by data processing techniques. However, an experimentally verified physical model for the origin and structure of the TMS-induced discharge artifacts, by which these methods can be justified or evaluated, is still lacking. We re-examine the known contribution of the skin in creating the artifacts, and outline a detailed model for the relaxation of the charge accumulated at the electrode-gel-skin interface due to the TMS pulse. We then experimentally validate implications set forth by the model. We find that the artifacts decay like a power law in time rather than the commonly assumed exponential. In fact, the skin creates a power-law decay of order 1 at each electrode, which is turned into a power law of order 2 by the reference electrode. We suggest an artifact removal method based on the model which can be applied from times after the pulse as short as 2 milliseconds onwards to expose the full EEG from the brain. The method can separate the capacitive discharge artifacts from those resulting from cranial muscle activation, demonstrating that the capacitive effect dominates at short times. Overall, our insight into the physical process allows us to accurately access TMS-evoked EEG responses that directly follow the TMS pulse, possibly opening new opportunities in TMS-EEG research.

Highlights

  • The combined use of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) has become a well-established method in neuroscience

  • Large electric artifacts that are induced in the EEG by the TMS must be removed from the EEG signal, since they are unrelated to brain activity and obscure crucial stages of the brain’s response

  • Technical advances have led to improved amplifiers that allow continuous recording during pulse application without amplifier saturation, the TMS pulse leads to large artifacts in the EEG recording

Read more

Summary

Introduction

The combined use of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) has become a well-established method in neuroscience. It is used for functional cortical mapping [1] and has been suggested for the identification of biomarkers [2, 3]. Technical advances have led to improved amplifiers that allow continuous recording during pulse application without amplifier saturation, the TMS pulse leads to large artifacts in the EEG recording. These artifacts are orders of magnitude larger than the physiological brain activity, and persist from a few to hundreds of milliseconds [5].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.