Abstract

Orthosteric agonism of the CB1 receptor normally associates with Gi signalling resulting in a net inhibition of cAMP production. Empirical evidence shows CB1 causes a net cAMP stimulation through Gs coupling under two conditions: co-stimulation with the D2 receptor and high-level CB1 expression. Two hypotheses have been proposed to account for these paradoxical effects, (1) Gi is consumed by coupling to D2 or extra CB1 and excess CB1 binds to Gs and (2), the formation of dimers CB1 -CB1 or CB1 -D2 switches Gi/Gs preference. This study explored the mechanisms of Gi/Gs preference based on a mathematical model of the CB1 receptor. The model was based on Hypothesis 1 and known mechanisms. The model was calibrated to align with multiple types of data (cAMP, Gi dissociation and internalisation). The key step of Hypothesis 1 was examined by simulation from the model. An experiment was proposed to distinguish Hypothesis 1 and 2. The model successfully descripted multiple types of data under Hypothesis 1. Simulations from the model indicated that precoupling of G protein with receptors is necessary for this hypothesis. The model designed experiments to distinguish Hypothesis 1 and 2 by increasing Gi & Gs in parallel with CB1 overexpression. The two hypotheses result in distinct cAMP responses. A mathematical model of CB1 -regulated Gi/Gs pathways was developed. It indicated Hypothesis 1 is feasible and G protein precoupling is a key step causing cAMP signalling switch. The model-designed experiments provided guides for future experimentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.