Abstract

Significance As first proposed more than 200 y ago by Grotthuss, proton transport is enabled by a chemical bond-breaking and bond-making proton-hopping mechanism through water networks or “wires,” often contained within confined systems such as protein channels or nanotubes. Herein, concepts from graph theory are utilized in order to define a continuously differentiable collective variable for water wire connectivity and facile proton transport. As such, the water connectivity can be explicitly quantified via free-energy sampling to both qualitatively and quantitatively describe the thermodynamics and kinetics of water-facilitated proton transport via Grotthuss hopping—something that has been lacking since the first conceptual identification of this key chemical process in nature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call