Abstract

The temporal transformations of the radial distribution of a liquid in a presoaked porous cylindrical catalyst support pellet detected by 1 H NMR microimaging technique in the course of the pellet drying are analyzed quantitatively in terms of the diffusion equation. The approach is shown to be adequate for evaluating the diffusivity and its dependence on the degree of pellet saturation with a liquid, provided that the NMR microimaging data are properly corrected for the relaxation weighting effects. It is demonstrated that for liquids characterized by a low surface tension, such as acetone, benzene and cyclohexane, transformations of the concentration profiles can be adequately modeled assuming a liquid content-independent diffusivity. In contrast, the diffusivity of water in titania and alumina pellets substantially decreases with the decrease of water content. For alumina pellets with a pronounced “bimodality” in the pore size distribution the water concentration dependence of diffusivity is shown to be non-monotonic. It is argued that for liquids with high surface tension, the shape of the concentration profiles and the behavior of diffusivity as a function of liquid content are both related to the shape of the cummulative pore size distribution of the porous solid under study due to the existence of efficient capillary flows induced by capillary suction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.