Abstract

Organ function emerges from the interactions between their constituent cells. The investigation of cellular organization can provide insight into organ function following structure-function relationships. Here, we investigate the extent to which properties in cellular organization can arise "for free" as an emergent property of embedding cells in space versus those that are actively generated by patterning processes. Default cellular configurations were established using three-dimensional (3D) digital tissue models. Network-based analysis of these synthetic cellular assemblies established a quantitative topological baseline of cellular organization, granted by virtue of passive spatial packing and the minimal amount of order that emerges for free in tessellated tissues. A 3D cellular-resolution digital tissue atlas for the model plant species Arabidopsis was generated, and the extent to which the organs in this organism conform to the default configurations was established through statistical comparisons with digital tissue models. Cells in different tissues of Arabidopsis do not conform to random packing arrangements to varying degrees. Most closely matching the random models was the undifferentiated shoot apical meristem (SAM) from which aerial organs emanate. By contrast, leaf and sepal tissue showed the greatest deviation from this baseline, suggesting these to be the most "complex" tissues in Arabidopsis. Investigation of the patterning principles responsible for the gap between these tissues and default patterns revealed cell elongation and the introduction of air spaces to contribute toward additional organ patterning complexity. This work establishes a quantitative morphospace to understand the principles of organ construction and its diversity within a single organism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call