Abstract
Toxoplasma gondii is an important foodborne pathogen, and the cause of a high disease burden due to congenital toxoplasmosis in The Netherlands. The aim of this study was to quantify the relative contribution of sheep, beef and pork products to human T. gondii infections by Quantitative Microbial Risk Assessment (QMRA). Bradyzoite concentration and portion size data were used to estimate the bradyzoite number in infected unprocessed portions for human consumption. The reduction factors for salting, freezing and heating as estimated based on published experiments in mice, were subsequently used to estimate the bradyzoite number in processed portions. A dose-response relation for T. gondii infection in mice was used to estimate the human probability of infection due to consumption of these originally infected processed portions. By multiplying these probabilities with the prevalence of T. gondii per livestock species and the number of portions consumed per year, the number of infections per year was calculated for the susceptible Dutch population and the subpopulation of susceptible pregnant women. QMRA results predict high numbers of infections per year with beef as the most important source. Although many uncertainties were present in the data and the number of congenital infections predicted by the model was almost twenty times higher than the number estimated based on the incidence in newborns, the usefulness of the advice to thoroughly heat meat is confirmed by our results. Forty percent of all predicted infections is due to the consumption of unheated meat products, and sensitivity analysis indicates that heating temperature has the strongest influence on the predicted number of infections. The results also demonstrate that, even with a low prevalence of infection in cattle, consumption of beef remains an important source of infection. Developing this QMRA model has helped identify important gaps of knowledge and resulted in the following recommendations for future research: collect processing-effect data in line with consumer style processing and acquire product specific heating temperatures, investigate the presence and concentration of viable bradyzoites in cattle, determine the effect of mincing meat on bradyzoite concentrations using actual batch sizes, and obtain an estimate of the fraction of meat that has been frozen prior to purchase. With more accurate data this QMRA model will aid science-based decision-making on intervention strategies to reduce the disease burden from meatborne T. gondii infections in The Netherlands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.