Abstract
Insulin-like growth factor 1 (IGF1) is a biomarker with various applications in medicine and also in doping control. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed that employs 15N-IGF1 as an internal standard. The method features urea-based IGF1/IGFBP-complex dissociation which is directly followed by tryptic digestion. Following solid-phase extraction (SPE) sample clean-up of the digest, IGF1 is detected by means of two signature peptides that enable quantification of total IGF1 as well as discrimination between IGF1 proteoforms with 'native' and modified or extended N-terminal sequences. Our method is capable of measuring plasma IGF1 concentrations over the clinically relevant range of 10-1000 ng/mL and was validated according to regulatory guidelines. Comparison with the IDS-iSYS IGF1 immunoassay revealed good correlation (R2>0.97) and no proportional bias between both assays was observed after normalizing the results against the WHO reference standard for IGF1 (02/254). Evaluation of several commercially available IGF1 preparations showed varying responses which were due to inconsistencies in purity and absolute amount of IGF1 present in these products. Our LC-MS/MS method introduces urea-based dissociation of IGF1/IGFBP-complexes to enable reliable quantification of IGF1 in plasma. Furthermore, the method is able to detect clinically relevant IGF1 levels without an enrichment procedure at the protein-level and thereby minimizes the risk of losing IGF1 proteoforms during sample preparation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.