Abstract

We give a quantitative interpretation of the frequent hypercyclicity criterion. Actually we show that an operator which satisfies the frequent hypercyclicity criterion is necessarily $A$-frequently hypercyclic, where $A$ refers to some weighted densities sharper than the natural lower density. In that order, we exhibit different scales of weighted densities that are of interest to quantify the ‘frequency’ measured by the frequent hypercyclicity criterion. Moreover, we construct an example of a unilateral weighted shift which is frequently hypercyclic but not $A$-frequently hypercyclic on a particular scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.