Abstract

T cell cytolytic activity targeting epidermal melanocyte is shown to cause progressive depigmentation and autoimmune vitiligo. Using the recently developed transgenic mice h3TA2 that carry T cell with a HLA-A2 restricted human tyrosinase reactive TCR and develop spontaneous vitiligo from an early age, we addressed the mechanism regulating autoimmune vitiligo. Depigmentation was significantly impaired only in IFN-γ knockout h3TA2 mice but not in TNF-α or perforin knockout h3TA2 mouse strains, confirming a central role for IFN-γ in vitiligo development. Additionally, the regulatory T cells (Treg) were relatively abundant in h3TA2-IFN-γ−/− mice, and depletion of Treg employing anti-CD25 antibody fully restored the depigmentation phenotype in h3TA2-IFN-γ−/− mice mediated in part through upregulation of pro-inflammatory cytokines as IL-17and IL-22. Further therapeutic potential of Treg abundance in preventing progressive depigmentation was evaluated by adoptively transferring purified Treg or using rapamycin. Both adoptive transfer of Treg and rapamycin induced lasting remission of vitiligo in mice treated at the onset of disease, or in mice with established disease. This leads us to conclude that reduced regulatory responses are pivotal to the development of vitiligo in disease-prone mice, and that a quantitative increase in the Treg population may be therapeutic for vitiligo patients with active disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call