Abstract
AbstractWe derive, via the Hardy–Littlewood method, an asymptotic formula for the number of integral zeros of a particular class of weighted quartic forms under the assumption of nonsingular local solubility. Our polynomials satisfy the condition that . Our conclusions improve on those that would follow from a direct application of the methods of Birch. For example, we show that in many circumstances the expected asymptotic formula holds when and .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.