Abstract

The numerous factors influencing the air-sea carbon dioxide (CO2) transfer velocity have been discussed for many years, yet the contributions of various factors have undergone little quantitative estimation. To better understand the mechanism of air-sea transfer, the effects of different factors are discussed on the air-sea transfer velocity and the various parametric models describing the phenomenon are classified and compared. Then, based on GAS EX-98 and ASGAMAGE data, wind models are evaluated and the effects of some factors are discussed quantitatively, including bubbles, waves, wind and so on by considering their interaction through a piecewise average approach. It is found that the air-sea CO2 transfer velocity is not only the function of the wind speed, but is also affected by bubbles, wave parameters and other factors. Stepwise and linear regressions are used. When considering the wind speed, bubbles mediated and the significant wave height, the root mean square error is reduced from 34.53 cm/h to 16.96 cm/h. Discussing the various factors quantitatively can be useful in future assessments of a large spatial scale and long-term air-sea CO2 flux and global change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.