Abstract

To determine whether inhibitors of microtubule assembly inhibit polymerization induced by discodermolide and epothilone B, as well as paclitaxel, and to quantitatively measure such effects. Inhibition was quantitated by measuring polymer formation either by turbidimetry or by centrifugation, and the amount of inhibitor required to inhibit 50% relative to an appropriate control reaction was determined. The inhibitory drugs evaluated were four colchicine site agents (combretastatin A-4, podophyllotoxin, nocodazole, and N-acetylcolchinol- O-methyl ether), maytansine, which competitively inhibits the binding of Catharanthus alkaloids to tubulin, halichondrin B and phomopsin A, which noncompetitively inhibit the binding of Catharanthus alkaloids to tubulin, and the depsipeptide dolastatin 15. While relative inhibitory effects were highly variable, a few broad generalizations can be made. First, assembly reactions that were either enhanced or dependent upon all three stimulatory drugs were subject to inhibition by all inhibitors. Second, the more readily the tubulin assembled, the greater the concentration of inhibitor required to inhibit polymerization. Drug IC50 values were generally lowest with no stimulatory drug and highest when discodermolide was present; IC50 values were higher as reaction temperature increased; and IC50 values were higher as the tubulin concentration increased. Third, inhibition of assembly by inhibitors of Catharanthus alkaloid binding to tubulin changed much less as a function of changes in reaction conditions than inhibition by inhibitors of colchicine binding. Since there was no apparent quantitative predictability of combined drug interactions with tubulin, any combination of interest must be studied in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.