Abstract

To evaluate the importance of the electronic structure of Cu(A) to its electron-transfer (ET) function, a quantitative description of the ground-state wave function of the mixed-valence (MV) binuclear Cu(A) center engineered into Pseudomonas aeruginosa azurin has been developed, using a combination of S K-edge and Cu L-edge X-ray absorption spectroscopies (XAS). Parallel descriptions have been developed for a binuclear thiolate-bridged MV reference model complex ([(L(i)(PrdacoS)Cu)(2)](+)) and a homovalent (II,II) analogue ([L(i)(Pr2tacnS)Cu)(2)](2+), where L(i)(PrdacoS) and L(i)(Pr2tacnS) are macrocyclic ligands with attached thiolates that bridge the Cu ions. Previous studies have qualitatively defined the ground-state wave function of Cu(A) in terms of ligand field effects on the orbital orientation and the presence of a metal--metal bond. The studies presented here provide further evidence for a direct Cu--Cu interaction and, importantly, experimentally quantify the covalency of the ground-state wave function. The experimental results are further supported by DFT calculations. The nature of the ground-state wave function of Cu(A) is compared to that of the well-defined blue copper site in plastocyanin, and the importance of this wave function to the lower reorganization energy and ET function of Cu(A) is discussed. This wave function incorporates anisotropic covalency into the intra- and intermolecular ET pathways in cytochrome c oxidase. Thus, the high covalency of the Cys--Cu bond allows a path through this ligand to become competitive with a shorter His path in the intramolecular ET from Cu(A) to heme a and is particularly important for activating the intermolecular ET path from heme c to Cu(A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.