Abstract
Indiana University-Purdue University Indianapolis (IUPUI)%%%%This thesis demonstrates a novel idea how components in a distributed real-time & embedded (DRE) system can choose from different data interchange formats at run-time. It also quantitatively evaluates three binary data interchange protocols used in distributed real-time & embedded (DRE) systems: the Common Data Representation (CDR), which collects data as-is into a buffer; Binary JSON (BSON), which enables on the fly discovery of elements in a message; and FIX Adapted for Streaming (FAST), which is a binary compression algorithm popularly used for data exchange in financial stock market domain. We compare these three data exchange formats to determine if it is possible to minimize the data usage without compromising CPU processing times, data throughput, and data latency. The lack of such a study has made protocols such as CDR popular based the assumption that collecting data as-is will consume less processing time and send with high throughput. We perform the study in the context of an Open Source Architecture for Software Instrumentation of Systems (OASIS). To perform our study, we modified its existing data interchange framework to flexibly and seamlessly integrate either format, and let the components choose a format at run-time. The experiments from our study shows that as data size increases, the throughput of CDR, BSON, and FAST decreases by 96.16%, 97.23%, and 84.41%, respectively. The increase in packaging and un-packaging times are 1985.12% and 1642.28% for FAST, compared to 3158.96% and 2312.50% for CDR, and 5077.98% and 3686.48% for BSON.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.